Масло в интеркулере дизельного двигателя: причины

Наши юристы подготовили развернутую информацию на тему "Масло в интеркулере дизельного двигателя: причины" Собрали исчерпывающие материалы чтобы разъяснить всю суть вопроса. Если остались дополнительные вопросы, Вы можете задать их нашему консультанту.

Содержание

Масло в выпускном коллекторе причины

Всем привет, разберемся с этой проблемой! Не торопитесь менять турбину, масло в патрубке не означает приговор турбине! В этом же конечно мне помог наш верный друг и товарищ audi-club.ru

Приготовтесь будет много букв, но это полезно знать каждому у кого стоит турбина:

Одной из типичных неисправностей турбокомпрессора является выброс моторного масла во впускной коллектор (или в интеркулер, если он есть) или в выхлопную систему. Но всегда ли при таких симптомах можно однозначно судить о неисправности турбины? Нет, далеко не всегда. Существует ряд причин, по которым даже полностью исправный турбокомпрессор выбрасывает масло в горячую или в холодную улитку, или в обе сразу.

Рассмотрим причины, по которым возникает такая ситуация

Первая причина (на мой взгляд, наиболее распространенная):
Не работает (или плохо работает) по каким-либо причинам система вентиляции картера двигателя. Система вентиляции картера любого двигателя внутреннего сгорания предназначена для устранения избыточного давления в картере двигателя, возникающего вследствие прорыва газов из камеры сгорания в картер при работе двигателя. Патрубок вентиляции картера любого ДВС подключаестя к зоне пониженного давления (т.е. разряжения). В нетурбированных двигателях это, как правило, впускной коллектор, в двигателях с турбонаддувом-это всасывающий патрубок турбокомпрессора. Сливная масляная магистраль турбокомпрессора подключается к масляной системе двигателя, как правило, ниже нормального уровня масла в картере. Таким образом, если в картере возникает избыточное давление картерных газов, масло не может нормально сливаться по сливной магистрали турбокомпрессора, оно «подпирается« в корпусе подшипников со всеми вытекающими отсюда последствиями. Причиной этого может быть сильная закоксованность масляного сепаратора системы вентиляции картера, закоксованность патрубка системы вентиляции картера, перелом или зажатие этого патрубка и т.д.
Вторая причина:
Затруднен нормальный слив отработанного масла по сливной магистрали турбокомпрессора по различным причинам (закоксованность, попадание посторонних предметов, остатков старой прокладки, герметика). Определить и устранить эту причину не составляет большого труда.

Масло в интеркулере дизельного двигателя – решаем проблему

Масло в интеркулере – это распространенная проблема, которая указывает на неисправность различных элементов в системе турбированного двигателя. Автолюбители часто жалуются на то, что масло гонит в интеркулер, и происходит провал мощности. Причину можно выяснить после детальной диагностики. А чтобы решить данную проблему, необходимо понимать принцип действия турбированных моторов и сопутствующих систем, что позволит правильно определить тип неисправности.

масло в интеркулере дизельного двигателя – решаем проблему

все интеркулеры на автомобилях делятся на два типа:

  1. воздух-воздух. в данном случае воздух под давлением проходит через специальные соты (наподобие радиатора),
  2. воздух-вода. поток проходит через резервуар с холодной водой. этот тип требует также установки водяного насоса и блока управления.

независимо от типа интеркулера, попадание масла на данную деталь постепенно приводит к неисправности в работе всей турбированной системы.

В Мире Моторов

Почему дизеля идут в разнос? Причины явления и как дизельный двигатель остановить

19 июля 2017 Категория: Диагностика неисправностей автомобиля

Самыми распространенными двигателями внутреннего сгорания являются дизельные и бензиновые агрегаты.

Как известно бензиновые моторы появились на много раньше, однако в настоящее время их популярность падает. Все чаще выбор автолюбителя падает именно на дизельный мотор, и в этом нет ничего необычно. Так как дизельные двигатели обладают рядом несомненных преимуществ:

  • Высокий уровень КПД;
  • Обладает лучшими мощностными характеристиками;
  • Более экономичен;
  • Сравнительно невысокая цена топлива.

Но и у этих моторов есть серьезные недостатки, и одним из них является неконтролируемое увеличение оборотов двигателя. Что это значит, чем грозит, почему дизель идет в разнос, и как остановить такой ДВС? О причинах разрушительного явления, а также способах остановки дизельного двигателя и пойдет речь в нашей статье.

avtoexperts.ru

В этой статье постараемся разобраться в таком вопросе, почему сапунит двигатель, какие могут быть последствия и какие проблемы вылезут наружу при диагностике силового агрегата с подобной неисправностью.

Сразу стоит оговориться, что сапунить может любой, вполне исправный мотор. Это связано с тем, что весь объем сгоревшей топливовоздушной смеси поршневые кольца не в состоянии удержать в цилиндре, и часть воздуха все равно попадет в поддон двигателя. Это в свою очередь создает условия для появления избыточного давления внутри движка, которое будет стараться выдавить масло через сальники и различные соединения, плюс отрицательно скажется на свойствах моторного масла. Но так как на исправном двигателе прорыв газов минимальный, то и давление газов будет минимальным.

Для того, чтобы снизить избыточное давление в картере двигателя была разработана система вентиляции картерных газов. На различных типах двигателей она отличается своей конструкцией, но суть остается одна — это снять излишнее давление внутри двигателя.

Система работает по принципу сапуна (сапун – дыхательный клапан), то есть это такое устройство, которое служит для выравнивания давления в картере с атмосферным.

Схема работы сапуна

Картер двигателя через шланг или металлическую трубку соединен с крышкой клапанов двигателя. При работе мотора, поршня при рабочем ходе создают разряжение, вытягивая в свою очередь воздух из картера, тем самым снимая излишнее давление в поддоне.

В крышке клапанов устанавливается маслоотделитель, с помощью которого часть масла, попавшая с воздухом из картера, вновь возвращается в поддон.

Помимо основной системы вентиляции картера через сапун, часть воздуха подтягивается еще и через дроссельный узел, соединенный с полостью клапанной крышки. А так как помимо воздуха втягиваются и пары масла, не осевшие в маслоотделителе, то по мере износа поршневой группы, в дроссельной заслонке начинает скапливаться большое количество нагара, вызывая нестабильную работу двигателя.

Причины, почему сапунит двигатель

ЦПГ

Первой очевидной причиной избыточного давления в двигателе является износ цилиндропоршневой группы. По мере эксплуатации происходит естественный износ стенок цилиндров, поршней и поршневых колец, что способствует увеличению прорыва газов в поддон двигателя.

Система вентиляция картерных газов

Процесс вентиляции подразумевает замкнутый цикл движения картерных газов. То есть из картера через сапун газы попадают в маслоотделитель, где освобождаются от капель масла, захваченного воздухом и через выходящий шланг из крышки клапанов, вновь попадают в воздухозаборник, возвращаясь в камеру сгорания двигателя.

В систему вмонтирован клапан, так называемый КВКГ (клапан вентиляции картерных газов), в задачу которого входит открывать систему вентиляции при возникновении излишнего давления в картере. Он работает только на отсос газов, не пуская их обратно. Клапан оснащен мембраной и имеет два отсека срабатывающих при нормальном и повышенном давлением. Если же клапан по какой-либо причине неисправен, то есть заклинит в открытом или закрытом положении, то это сразу отразится на работе двигателя.

Так при заклинивании в открытом положении, часть картерных газов будет постоянно попадать через отсек с нормальным давлением в камеру сгорания двигателя, обедняя смесь, вызывая перебои в работе мотора (возможны пропуски зажигания) и увеличивая расход топлива. Особенно это отрицательно отразится на инжекторных моторах, последнего поколения, где отвод картерных газов врезается уже после узла дроссельной заслонки.

Когда же клапан заклинит в закрытом положении, то в двигателе создастся высокое избыточное давление и масло будет просто пытаться выдавливаться через сальники и различные соединения. Плюс высокое давление будет выдавливать масло в камеру сгорания забрасывая свечи зажигания, наслаиваясь нагаром на тарелках клапанов и даже выдавливать масло через свечи в свечные колодцы. При сильно высоком давлении возможно даже выдавливание масляного щупа из его канала. Как правило, все это сопровождается повышенным расходом моторного масла и как следствие «голодание» коленвала» и других трущихся пар, что может вывести двигатель из строя.

Способы решения проблемы:

1. Ремонт двигателя

В зависимости от состояния, это может быть просто замена колец, либо замена поршней и поршневых колец ремонтных размеров, что связано с расточкой цилиндров блока.

В ГБЦ не должно быть износа направляющих втулок и самих клапанов, в противном случае замена маслосъемных колпачков не решит проблему.

2. Очистка клапана, замена мембраны либо самого клапана вентиляции с прочисткой всей системы вентиляции (бывает полностью забитой грязевым нагаром);

3. Очистка маслоотделителя.

Как проверить состояния вентиляции картера

На заведенном двигателе необходимо снять крышку маслозаливной горловины на крышке клапанов. При исправном двигателе крышка легко снимется, из горловины не будут выплескиваться брызги масло или идти сизый дым. Если и проскочит две-три капельки масла, это нормально и значит поршневая группа, как и система вентиляции картерных газов исправна.

В противном случае при открытии крышки будет разбрызгиваться масло, воздух будет сапунить и возможно появление выхлопа, как из выхлопной трубы.

Как не стоит решать проблему

Вроде бы решить проблему можно отсоединив шланг вентиляции картера от крышки клапанов и выведя его минуя двигатель под машину. Однако в этом случае шланг вентиляции помимо выброса газов будет являться пылесборником, так как при ходе всасывания поршней, будет подхватывать воздух с улицы. Такая экономия, на решении проблемы. Может закончится быстрым износом как ЦПГ, коленвала и сложным и дорогостоящим ремонтом двигателя. Подобная мера может быть допустима в крайнем случае, когда нужно добраться до гаража с неблизкого расстояния, а мотор закидывает маслом.

Характеристика

Иногда вы слышите «дизель пошел в разнос». Что это значит? Разнос – это неконтролируемое увеличение оборотов коленвала двигателя, вне зависимости от положения педали акселератора. В большинстве случаев водитель не может управлять данным процессом. Коленвал вращается с большой скоростью, которая постоянно увеличивается.

OlegShakirov › Блог › Основные причины поломки турбокомпрессоров и их ремонт

Современные экологические нормы вынуждают автопроизводителей все чаще применять конструкцию турбонадува в двигателях. И если раньше турбодадув был уделом спортивных легковых автомобилей или грузовых автомобилей, то сейчас его можно встретить под капотом почти на любой новой машине. Тем интереснее разобраться с практикой по ремонту турбокомпрессоров.

Так сложилось, что большинство мастеров в автосервисах при любой проблеме с турбонадувом почти сразу приговаривают турбокомпрессор к полной замене, поскольку сложность самого устройства и невозможность вернуть заводские характеристики без специального оборудования создали восстановленным турбинам плохую репутацию.

Также многие считают, что лучше взять неоригинальный турбокомпрессор, сделанный в Поднебесной, но как показывает практика «Китайский» аналог только внешней формой пытается копировать оригинальную деталь, но не содержанием, и в дальнейшем такая экономия может отразится не только на ресурсе самого агрегата, но и привести к выходу из строя двигателя автомобиля.

Также специалисты отмечают, что нелегальные копии почти никогда не выдают характеристики, как у оригинального агрегата.
Ресурс турбокомпрессора в идеальных условиях равен ресурсу самого двигателя, но на практике он больше зависит от стиля езды водителя и от качества техобслуживания автомобиля. В среднем на бензиновых двигателях ресурс турбины составляет около 150 тыс. км, на дизельных около 250-300 тыс. км.
Продлить жизнь агрегата поможет частая замена масла и воздушного фильтра, использование турботаймера и отслеживание уровня масла в двигателе. Со временем она, как любая другая деталь в автомобиле требует диагностики и ремонта. Поскольку чаще всего турбина выходит из строя постепенно, важно распознать симптомы умирающего агрегата довольно сложно. Самый первый признак, это потеря мощности, появляется ощущения, что пропала тяга. Очень полезно иметь датчик давления наддува турбины, в таком случаи можно сразу заметить изменения в работе агрегата.
Еще одной визуальной составляющей изношенной турбины, если при разгоне появляется дым из выхлопной трубы. Синий дым означает сгорание масла в цилиндрах. В этом случаи необходимо немедленно обратится в автосервис, вероятно, что масло в цилиндры попадает через турбину. Если она изношена, то масло попадает через холодную часть турбины во впускной коллектор.

Чаще всего выход из строя турбокомпрессора вызван не естественным износом, а с внешними причинами.
Самыми частыми неисправностями турбокомпрессора считаются деформация или износ подшипников ротора.

Во время работы турбины, между подшипником и осью возникает масляная подушка, но залив плохое или не то масло, эта подушка исчезнет. Такое может произойти из-за грязного масла в двигателе. Так частицы, при попадании в масло абразива, песка, грязи, дисульфида молибдена, переносимые маслом могут попасть в турбину и подвергнуть сильному износу втулки или они могут оставить след и на валу.

Турбина может выйти из строя из-за коксования от некачественного масла, применения присадок и смешивания несовместимых масел, не вовремя замененный масляный фильтр также может привести к образованию масляных сгустков. Попадание в масло воды или топлива может привести к закупорки масленых каналов. Все это приводит к быстрому износу вала, втулок и повышенной температуре в агрегате. Диагностируется такая проблема по изменению цвета турбинного вала от температуры.
Изменится цвет ротора на синий, при полном или временном отключении подачи масла в турбокомпрессоре, а на подшипниках образуется потемнение и износ. Аналогичная ситуация может случиться, когда турбина работает очень долго на максимальной мощности, что часто приводит к перегреву масла в двигателе. От высокой температуры масло может полностью сгореть и закоксовать вал. Полное отсутствие смазки приводит к моментальному выходу из строя агрегата.
Турбина может выйти из строя, если низкое давление масла, ниже 1,2 кгс/см2
Или давление картерных газов больше 6О мм.рт.ст. на холостых, активное попадание газов из камеры сгорания в картер двигателя препятствует нормальному сливу масла из турбины. Данная неисправность может быть связана с проблемами в работе системы вентиляции картерных газов или из-за повышенного износа цилиндропоршневой группы.
Сам турбокомпрессор может быть перегрет из-за не правильно установленного момента зажигания у бензиновых двигателей или момента впрыска для дизельных двигателей, некачественного топлива, а так же попадания масла в выпускной коллектор и его сгорание на лопатках турбины. Последнее может привести к плавлению или обрыву лопаток турбины.
В случае, когда недосмотрели и выше наведенные факторы одновременно совпали, а такое бывает часто, ожидайте полного выхода из строя турбокомпрессора.

Кроме выше указанных причин, могут быть механические поломки от посторонних предметов в полости турбокомпрессора со стороны компрессорной улитки или улитки отработанных газов, а именно от песка или прочего мусора из корпуса воздушного фильтра. На лопастях турбинного вала могут образоваться эрозии или они могут быть полностью разрушены.

При работающем двигателе появляется посторонний шум от турбины в виде свиста или скрежета.
Турбокомпрессор может выйти из строя от неисправного редукционного клапана байпаса.

Данный клапан несет предохранительную функцию и при превышение надува он часть воздуха переспускает мимо лопаток турбины. В этот момент происходит открытие актуатора установленного до турбины и через него выходит лишний воздух. Замена актуатора несет под собой не только саму замену, но и регулировку. Чаще всего ремонт этого узла экономически не целесообразен.

Выходят из строя электронные компоненты, отвечающие за открытие и закрытие клапана, датчики надува. Также выходят из строя сервоприводы управления турбиной. Изнашиваются шестеренки привода, что приводит к сложностям с открытием и закрытием или выходит из строя сам электромотор привода.

Еще одной причиной преждевременного выхода из строя турбины является экстремальная эксплуатация, а именно повышение заводского надува или перекрут двигателя. Обнаружить это можно по повреждениям лопастей турбины. Превышение заводских оборотов, турбина может развивать до 200 тыс об/мин может привести к образованию микротрещин, что потом приведет к разрушению лопастей.
В свете резкого роста курсов долларов и евро цены на турбины выросли в 2 раза. Средняя цена новой турбины составляет 40-50 тыс. рублей. Ремонт может обойтись в несколько раз дешевле. Вдобавок и количество автомобилей с турбонадувом сильно возросло. В данный момент уже практически выровнялось соотношение легковых и грузовых турбин поступающие в автосервисы на ремонт.
Поэтому спрос на услуги по ремонту значительно вырос. При этом конкуренция на рынке ремонта турбин находится на очень низком уровне. Крупные фирмы по ремонту турбокомпрессоров находятся только в крупных городах.
Большинство фирм не занимается капитальным ремонтом турбокомпрессоров, чаще всего они ограничиваяются только заменой картриджа турбины. Даже если учитывать, что катриджы на полки магазинов попадают уже в отбалансрованном виде, дополнительная проверка не помешает. Если использовать «китайские» картриджи, то больше половины с высоким дисбалансом, подтеканиями масла, подклиниванием вала и т.д.

Использовать китайские картриджи, тем более без специального оборудования, все равно, что ходить по минному полю. Каждый картридж имеет свой параметр скорости балансировки и допуска дисбаланса. Также не специалисту будет тяжело провести диагностику на износ остальной части турбины, например, проверить посадочные места. Как единичный случай для собственного автомобиля — можно. Для производственных нужд — ни в коем случае без балансировки нельзя.
Частота вращения ротора достигает 200 тыс. оборотов в минуту, даже если был небольшой дисбаланс при сборке, то это может привести к быстрому выходу турбины из строя. При правильно проведенной балансировке дисбаланс ротора турбины не превышает несколько тысяч долей грамма.
Получается, что без специального оборудования не произвести качественный ремонт, некоторые виды турбин даже не удастся разобрать без специального инструмента. Например, существуют специальные ключи для геометрии турбин. Требуется специальные балансировочные стенды. Грузовые турбокомпрессора балансируются в среднем до 80 000 об/мин, легковые турбокомпрессора балансируются в среднем до 200 000 об/мин.

Балансировочные станки должны соответствовать параметрам и требованиям, которые необходимы для балансировки. Нельзя обойтись и без программатора приводов (актуаторов) турбин. Он позволяет диагностировать, копировать и передавать прошивки от одного привода другому, а также вручную изменять угол работы привода. Также потребуются токарные станки, круглошлифовальные станки и фрезерные станки.
Помимо дорогостоящего оборудования, на развитии этого направления сказывается отсутствие мастеров по такой узкой специализации. Существует только общее техническое образование, а для получения знаний по ремонту турбин следует пройти специальные курсы.

Сама турбина может ремонтироваться неограниченное количество раз. Ремонту подлежит и горячая, и холодная часть, но только если не было внешнего воздействия на них. Например, турбина может не подлежать ремонту после аварии, когда замят корпус или на нем есть трещина. Также турбина не подлежит восстановлению или сам корпус был изготовлен с допущением брака.
При капитальном ремонте турбина полностью разбирается, моется специальным химическим составом и корпус подвергается пескоструйной обработке. Средний корпус растачивается в ремонтный размер или полностью заменяется. Турбинный вал проверяется на кривизну, правится и шлифуется в ремонтный размер, если это невозможно, то заменяется на новый.

Вал балансируется порядка 3000 оборотов в минуту. Канавка турбинного вала под маслоотражающее кольцо тоже калибруется. Производится замена подшипников скольжения, если для данного компрессора отсутствую ремонтные втулки, то они изготавливаются из бронзового сплава индивидуально. Производится замена подшипника. Ремонтируется или заменяется тарелка турбины. Заменяются маслоотражающие кольца в картридже турбины. Заменяются компрессионные кольца. На финальном этапе происходит заключительная сборка всех деталей, помещая их в общий корпус, после чего выполняется балансировка картриджа.
После сборки важно настроить правильный угол электрического клапана для турбин, оснащенных изменяемой геометрией. На стенде можно посмотреть на количество воздуха, проходящего через узел изменяемой геометрии и сравнить с эталонным значением.

В конце готовая турбина проходит цикл испытаний на специальном стенде, где ее проверяют на вибрации и на течь масла. Такой стенд имитирует работу двигателя и позволяет снизить процент брака до нуля. Если ремонт агрегата не возможен, можно изготовить гибрид турбины в родном корпусе.
Также можно усилить конструкцию или повысить производительность, путем замены турбинного вала и компрессорного кольца на большие по размеру и расточку корпуса турбины.

https://www.youtube.com/watch?v=-oPOSgLeZnk

Каковы риски, если мотор пойдет в разнос?

Есть два пути развития ситуации. Один опасный, а другой очень неприятный.

Первый вариант. Если разнос мотора начинается во время движения, то автомобиль становится подобием разъяренного металлического мустанга, начинает бесконтрольно разгоняться, что в наихудшем случае может привести к аварии, все зависит от уровня водительского мастерства и мгновенного умения адекватно реагировать на экстремально развивающуюся ситуацию. Если с этим все в порядке, то и последствия не смогут выйти за грани разумного.

Второй пример. Если, данное происшествие приключилось на стоянке/парковке, в общем тогда, когда автомобиль работая стоял на нейтральном режиме, то мотор, выйдя на свои запредельные обороты в нештатном режиме работы, будет продолжать крутиться до полной своей остановки, из-за выхода его из строя. В зависимости от определенных условий он в буквальном смысле слова может снести себе «башню» сорвав таким образом головку блока, с последующим разбрасыванием всех своих внутренностей по ближайшей окружающей местности.

Причины разноса

Основных причин разноса дизельного двигателя три: неисправность топливного насоса высокого давления, попадание большого количества масла в камеру сгорания через неисправный турбо нагнетатель и неисправность форсунок. Разнос электродвигателей происходит при резкой потере нагрузки, при неисправности системы управления или при неисправности обмоток независимого возбуждения.

Неисправность топливного насоса высокого давления

В отличие от бензиновых двигателей, в которых регулирование подачи топливо-воздушной смеси для изменения мощности и оборотов двигателя осуществляется дроссельной заслонкой, дизельные двигатели управляются изменением количества топлива, подаваемого топливным насосом высокого давления (ТНВД) в камеру сгорания. ТНВД приводится от распределительного вала, и его производительность напрямую задает скорость вращения двигателя. Для поддержания заданных оборотов применяется центробежный регулятор, ограничивающий объём впрыска при увеличении скорости вращения. В случае заклинивания рейки ТНВД разрывается цепь отрицательной обратной связи, в результате чего двигатель в зависимости от положения регулятора может либо заглохнуть из-за недостаточного количества топлива, либо уйти в разнос.

Захват масла

В большинстве транспортных средств вентиляция картера двигателя выведена во впускной коллектор. На сильно изношенном двигателе газы прорываются через стенки поршня из камеры сгорания в картер, подхватывают масляный туман из картера и выносят его во впускной коллектор. Дизельный двигатель может работать на моторном масле, так как оно содержит даже больше химической энергии, чем штатное дизельное топливо, поэтому обороты двигателя начинают расти. В результате увеличения оборотов растёт и количество масляного тумана, захватываемого из картера, и образуется положительная обратная связь. Такой разнос дизеля ещё опаснее, поскольку количество подхватываемого масляного тумана оказывается достаточным для работы вообще без подачи топлива и обороты растут бесконтрольно, так как все штатные способы регулирования воздействуют на подачу из ТНВД, что приводит к тяжёлым авариям. Для защиты от работы на масле на некоторых дизелях (автомобильном ЯАЗ-204, тяжёлом Д49, стоящем на тепловозах, кораблях, передвижных электростанциях, и др.) во впускном тракте установлена воздушная захлопка, закрывающаяся по сигналу от предельного выключателя.

Дизельный двигатель также может уйти в разнос при прогаре поршня или при неисправности турбины (разрушение уплотнений вала или излом самого вала). При этом масло накапливается в интеркулере, о чём не всегда вспоминают при ремонте — в результате отремонтированный двигатель может вновь уйти в разнос. Нежелательное моторное масло может также попадать во впускной коллектор из протекающих сальников турбокомпрессора, от превышения уровня масла в картере или из-за других механических проблем. В транспортных средствах или стационарных объектах, где используются газодизельные двигатели, потребляющие природный газ, утечка газа также может привести к разносу из-за попадания его в воздухозаборник двигателя. Аналогичная проблема есть и в местах, содержащих угольную пыль, поэтому все машины с дизельными двигателями, работающие в угольных разрезах, обязательно имеют фильтр угольной пыли.

Разнос электрических двигателей

Разнос может возникать только у коллекторных электрических двигателей. У синхронных и асинхронных двигателей частота вращения всегда ограничена частотой тока питающей сети, а у бесколлекторных двигателей — управляющей электроникой. Происходит при резкой потере нагрузки: разрушение механической передачи (срезание приводной шпонки, обрыв приводного ремня), боксование колёс (на локомотивах), разрыв струи перекачиваемой жидкости (у электронасосов).

Зачем нужен кислородный датчик

Этот конструктивный элемент появился в 1976 году, и первые лямбда-зонды были выпущены немецким концерном Bosch. Его появление было вызвано тем, что в середине 70-х годов прошлого века случился резкий скачок цен на нефть, поэтому большинство автовладельцев задумались об экономичности своих машин. Благодаря датчику удалось достигнуть ощутимой экономии топлива без снижения мощности.

Датчик кислорода дым из трубы

Датчик лямбда-зонд анализирует количество несгоревшего в выхлопе кислорода. Если его много, то подаваемая в цилиндры смесь – бедная, когда его мало – воздушно-топливная смесь слишком обогащена.

Благодаря этим данным электронный блок управления регулирует соотношение воздуха и горючего в смеси, что позволяет достигнуть максимально эффективности при работе, а это приводит к экономии топлива.

Идеальный показатель – на сгорание 1 кг топлива должно потребляться 14,7 кг воздуха. Стандартный кислородный датчик находится в выпускном коллекторе.

Датчик кислорода дым из трубы

С 90-х годов на автомобили стали устанавливать два лямбда-зонда – верхний кислородный датчик непосредственно на выходе из двигателя, а нижний датчик после катализатора. Первый зонд контролирует качество подаваемой топливной смеси, а второй – следит за состоянием катализатора, что важно для соблюдения экологических норм.

Датчик кислорода дым из трубы

Из-за плохого качества топлива и других проблем нижний датчик кислорода часто выходит из строя. Решать эту проблему пытаются разными способами, один из них – программное отключение, другой – механическая обманка лямбда-зонда.

Такая обманка датчика кислорода работает очень просто – в ней делается дополнительное отверстие или устанавливается сеточка для доступа воздуха извне. В результате концентрация выхлопа и вредных веществ в нем снижается и зонд считает, что с экологией все нормально.

Более надежный вариант — перепрошивка ЭБУ.

Устройство лямбда-зонда

Чтобы понять принцип работы датчика кислорода, нужно знать его устройство. В лямбда-зонде установлены два электрода.

Внешний электрод взаимодействует непосредственно с выхлопом, внутренний электрод взаимодействует с атмосферным воздухом. Между этими электродами располагается слой диоксида циркония.

Существуют титановые зонды, которым не требуется контакта с атмосферой, но они встречаются очень редко и стоят дорого.

Датчик кислорода дым из трубы

В результате взаимодействия с различными средами на электродах возникает разное напряжение, результирующее значение которого передается по проводу в ЭБУ. Из этих данных делается вывод о богатстве или бедности смеси. При значениях от 0,1 до 0,45 В – смесь обедненная, в диапазоне 0,45-0,9 В – смесь обогащенная. Идеальное соотношение воздушно-топливной смеси достигается при 0,45 В.

Первые модели датчиков кислорода работали только до 3000 оборотов двигателя, а после этого он переходил на усредненные параметры обогащения смеси. Но современные лямбда-зонды работают во всем диапазоне оборотов, что обеспечивает лучшую эффективность и экономичность.

Диагностика

Проверку лямбда-зонда осуществляют, не снимая его с автомобиля. Для этого берется специальное приспособление и присоединяется к эклектической системе, после заводится двигатель. Чтобы датчик начал работать, его нужно разогреть до 300 градусов, а титановый зонд – до 700.

Датчик кислорода дым из трубы

Значения напряжения на устройстве должны меняться в диапазоне от 0,1 до 0,9 В примерно 8 раз в 10 секунд. Это означает, что датчик работает правильно и никаких проблем с ним не возникает. Если частота смены показателей уменьшается, зонд не работает нормально и скоро выйдет из строя. При полном выходе из строя на экране диагностического аппарата высвечивается одно значение.

Что происходит при неисправном кислородном датчике

В случае неисправности лямбда-зонда, когда напряжение на нем не меняется, ЭБУ начинает обогащать рабочую смесь, обеднять ее он не будет, поскольку это приводит к более серьезным последствиям.

Специфический запах начинает проникать в салон, а расход топлива возрастает в 2 раза. При этом разгоняется автомобиль гораздо хуже, поскольку топливо заливает цилиндры, иногда из выхлопной трубы доносятся характерные хлопки.

Что приводит к поломке лямбда-зонда

Устройство датчика кислорода таково, что главным его врагом являются высокие температуры. При удалении катализаторов, без соответствующей компенсации, температура выхлопных газов увеличивается, что со временем это приводит к выходу зонда из строя.

Вторая проблема – попадание антифриза в выхлопные газы. Но если охлаждающая жидкость попадает в камеры сгорания, а из них в выхлопной коллектор, поломка кислородного датчика – это наименьшая из проблем.

Третья распространенная причина поломки – попадание масла на электроды. Это происходит, когда выкинутое из мотора масло попадает на турбину, где оно выгорает, а пары попадают в лямбда-зонд, который выходит из строя. Выгорающие масляные брызги существенно поднимают температуру в выхлопном коллекторе.

При изготовлении тюнингованных систем выхлопа датчик кислорода иногда устанавливают снизу. Это ошибка, поскольку образующийся конденсат и твердый осадок приведут к быстрой коррозии электродов, и устройство сломается. Поэтому лямбда-зонд устанавливают сверху магистрали и еще под углом 45 градусов, чтобы поток выхлопных газов заходил правильнее.

Сколько времени работает лямбда-зонд

Первые варианты кислородных датчиков, с двумя проводами, при нормальном режиме эксплуатации работали в районе 50 тыс. км пробега. Новая конструкция зондов с тремя или четырьмя проводами проработает в районе 80 тыс. км. Лямбда-зонды, устанавливаемые в современные автомобили способны отработать до замены около 150 тыс. км.

Отдельный подвид этих датчиков – широкополосные лямбда-зонды, которые проходят не менее 150 тыс. км., обладая рядом преимуществ.

Они оборудованы отдельной шкалой вывода, поэтому водитель может в реальном времени видеть, какая смесь подается в двигатель. Это устройство работает во всем диапазоне оборотов и обрабатывает информацию с гораздо большей скоростью.

  Особенно полезны такие датчики для автовладельцев, которые любят заниматься тюнингом своих моторов.

Видео: Лямбда! Датчик Кислорода и Повышенный расход топлива

Датчики от сторонних производителей

Чтобы улучшить работу двигателя или просто заметить кислородный датчик, вышедший из строя, автовладельцы обращаются к вариантам от сторонних производителей, выпускающих, в том числе, и широкополосные датчики. Для этого лучше брать продукцию известных компаний, среди которых популярны:

  1. АЕМ performance electronics;
  2. INNOVATE motorsports;
  3. Depo Racing.

Каждый из этих брендов предлагает несколько типов и поколений датчиков кислорода, которые отличаются приемлемым уровнем точности и надежности. Есть определенные нарекания к широкополосным зондам от Depo Racing, но и здесь многие специалисты поспорили бы.

Зонды от INNOVATE motorsports требуют предварительной калибровки. Для этого их нужно подключить на воздухе, чтобы они установили нужное значение, и только после этого устанавливать в выхлопную систему. Иногда в них возникают проблемы с контроллерами и другой электронной начинкой. Наименьшее количество проблем возникает с АЕМ performance electronics, но они стоят дороже всего.

Датчик кислорода дым из трубы

При установке широкополосного лямбда-зонда нужно знать, что он не переносит перегрева. Поэтому они устанавливаются на расстоянии не менее 40, а лучше 50 см от турбины или начала штанов выпускного коллектора.

Заключение

Датчик кислорода – необходимый элемент любого современного двигателя. Благодаря ему мотор понимает, что происходит в камерах сгорания, достаточно ли топлива в них поступает или нужно увеличить количество воздуха в смеси.

Бедные смеси приводят к детонации и преждевременному износу двигателя, разрушению поршневой группы и цилиндров.

При излишне богатой смеси в камерах сгорания образуется нагар, кроме того, она смывает масло со стенок цилиндров, что тоже приводит к ускоренному износу.

При замене лямбда-зонда можно обращаться к сторонним производителям, перепиновав несколько проводов и получив более точное и надежное устройство.

При этом ускоренная передача информации позволяет работать по более адекватному алгоритму, оперативно реагируя на изменившиеся условия.

В результате это поможет сэкономить деньги на топливе, избежать проблем с богатой или бедной смесью, а двигатель будет работать в идеальном для него режиме.

Из истории

На самом деле идея использовать мощность выхлопных газов не давала покоя инженерам практически с самого начала изобретения ДВС. Немецкие инженеры, которые занимались строительством автомобилей и тракторов вместе с Дизелем и Даймлером, стали заниматься опытами, в ходе которых пытались повысить мощность двигателя и снизить расход горючего с помощью нагнетания сжатого воздуха на базе энергии выхлопа.

"Лада-Ларгус" автомат: описание модели, отзывыВам будет интересно:«Лада-Ларгус» автомат: описание модели, отзывы

2dd120d53c98ac61333661d7e89e5008.jpg

Источники

  1. Практика муниципального управления № 8 2014; МЦФЭР - М., 2014. - 140 c.
  2. Арбитражный процесс. Практикум. 2-е издание; Проспект - М., 1985. - 826 c.
  3. Груздев, В. В. Гражданско-правовая защита имущественных интересов личности. Книга 1. Общие положения / В.В. Груздев. - М.: Юстицинформ, 2012. - 472 c.
  4. Рубин, Ю. Б. Конкурентный статус участников рынка / Ю.Б. Рубин. - М.: Синергия, 2016. - 398 c.
  5. Гражданское право. 4-е издание. Учебник / Отсутствует. - М.: Проспект, 1999. - 527 c.
Юрист Александр Сергеев/ автор статьи
ЮРИПОМОЩНИК 2021